
Repositories
The Repositories page lists all of your repos. From this page, you can connect
Reviewable to Github repositories, adjust the connections' settings, and manage your
Reviewable subscriptions (for which, please see the next chapter).

The repositories are grouped by owner and listed alphabetically. If you don't see an
organization of which you're a member, ensure that you click Show all organizations if
it's there. If the organization is still missing, check whether you need to request
approval for Reviewable from your organization owners.

Security concerns

First off, Reviewable will never store your source code on its servers. Each session will
fetch the code directly from GitHub into the browser over a secure HTTPS connection.
For transparency, here’s a non-exhaustive list of the kinds of data stored on
Reviewable's servers:

Comments, including drafts.

Pull request metadata, such as filenames, and commit and file SHAs.
Basic account data, such as ID, username, and email address.
The OAuth access token that you authorized (encrypted for extra security).
Repo permissions and organization memberships.
Settings for all levels: organization, repository, user, and review.
Subscription data, but only the last 4 of the credit card and expiration date are
kept.
Issue titles, commit messages, and GitHub branch protection settings are cached
and flushed regularly.

Access is controlled by a set of standalone security rules that are enforced directly by
the database. Access permissions are inherited from GitHub and rechecked every 15
minutes to 2 hours, depending on the permission's power. All data is always
transmitted across secure connections.

The access token remains encrypted at rest with a key known only to Reviewable
servers, and used only to access GitHub on your behalf. Unless you grant explicit
written authorization, Reviewable staff will never use the token to access your
repository contents or mutate data. (We may use it to test innocuous read-only
metadata API calls when debugging an issue specific to your account.)

Reviewable does need write permissions for your repos. See the GitHub authorizations
section for a full explanation.

Because Reviewable is an OAuth app, the commit statuses it posts on pull requests
cannot be authenticated and could be posted by any user or app with status write
permissions under the same context. This could let someone bypass branch protection
settings by faking a "review complete" status. If this is a concern in your environment,
you may wish to exercise discretion in granting such permissions to users or apps, or
institute an audit process that checks whether the statuses' author is the same user
who connected the repository to Reviewable.

And of course under no circumstances will we disclose any of your private information
to other parties beyond what's needed to provide our service — please see our terms of
service and privacy policy for the legal details.

If you need more details about our security architecture or have any other concerns we
can address, please contact us at support@reviewable.io.

Connecting repositories

The indicator next to each repository name shows the connection state for this repo.
While a repo is connected, Reviewable automatically creates a review for any open PR
and inserts a link into all open PRs in the repo.

The toggle's color reflects the state of the connection:

Black — The repo is disconnected. Reviewable will not automatically create
reviews for this repo, but it is possible to initiate a review from the Reviews
dashboard.
Green — The repo is connected and healthy. Reviewable will automatically create
and update reviews for all open PRs and insert a link to the review into the
description for each PR. (You can customize this latter behavior in the settings, but
must do so before connecting the repo!)
Red — The repo was connected, but the connection is now broken. Look for the
error message on this page. Though some reviews may be created under this
condition, it is necessary to fix the problem to ensure all reviews function properly.

You must have repo admin permissions to connect or disconnect a repo. Connecting to
a private organizational repo may cause you to automatically begin the 30-day free trial.

It is entirely safe to connect or disconnect a repo at any time without risk of data loss.
After a review is created, it will not be affected by this toggle.

If you previously connected repos, but later revoked the authorization for
Reviewable, you will need to re-authorize access to maintain the connection. You

?

Each connected repository will have an "N open reviews" link under it that will take you
to a repository-specific reviews dashboard.

Connect all current and future repos

There's also a special All current and future repos toggle. When turned on by an
organization owner, Reviewable will connect all current and future repos in this
organization and automatically create reviews for those repos. Reviewable will not
connect any repos that were previously manually toggled off.

Create reviews for your own PRs

You can also get Reviewable to create reviews for all PRs that you author, across all
repos. If the My PRs in any public repo toggle is on, Reviewable will regularly scan
your public PRs and create reviews for them (inserting a link into the PR), covering all of
your open source contributions.

will see messages at the top of the repo page that prompt you to take action.

If a user has connected a repo but later leaves an organization, it will be
necessary for another admin to toggle the repo off and then on to assume
control of the connection. (Reviewable will send a warning email to the original
connector if it detects this situation.)

!

You may wish to confirm the settings of current repos and designate a prototype
repo for future ones before you turn on this feature. By default, Reviewable will
insert a link into all open PRs in all repos unless you've changed this setting
beforehand.

!

The same applies to private PRs for the My PRs in any private repo toggle, which gives
you the flexibility to have only a subset of users in a private repo use Reviewable.

Reviews in connected vs unconnected repos

When you connect a repo, you get links to the reviews from all PRs in that repo and
immediate updates whenever anything changes in GitHub.

By contrast, Reviewable doesn't get write access to the repo if you individually connect
all your own PRs or create ad-hoc reviews via the dashboard. There are some
disadvantages to this approach:

New commits, GitHub comments, labels, and the PR assignee don't immediately
sync with the review, but will only synchronize after somebody loads the review.
The dashboard will display stale information for such reviews. Comments posted
in Reviewable will propagate immediately.
Assignee and label directives in GitHub and emailed comments won't apply until a
user loads the review.
Review status checks won't post to the PR, since Reviewable isn't subscribed to
repo events and unable to make timely updates.

This last is a legacy feature that may get removed in the future, since it was
mainly used to constrain the set of contributors to avoid going over quota, and
this can now be specified directly in a subscription's configuration. It will only
work if the relevant repo has an active subscription at the time the PR is created
and won't backfill if a subscription is created later.

!

Reviewable may not be able to reliably detect and apply your branch protection
settings in its UI. (The branch protection settings will be enforced by GitHub no
matter what, though, so this is safe but potentially confusing.)
It may not be possible for Reviewable to pin revision commits, so if you use git
rebase and git push --force , some of them may get garbage collected and will
no longer be accessible in the review. They'll usually get pinned when the reviewer
(with push authority) accesses the review.

Though the differences above may be minor, it's much more convenient and reliable to
connect a repo directly.

Repository settings

To configure Reviewable repository settings you may use the GUI or the .reviewable
directory in your project root. Each description below will include setting options using
the GUI or by using the settings.yaml file in your .reviewable directory.

You may find it impractical to use Reviewable for all PRs, especially for small
changes. While every pull request from a connected repo will automatically
display a button that links it to a Reviewable review, you can simply ignore it and
conduct the review in GitHub. Reviewable will close the review when you close
the PR. However, if the PRs are in a private organizational repo, each review will
count against your contributor maximum — whether you use it or not.

?

You can move your review settings from the GUI to the .reviewable directory
by clicking "Store settings in repo?" link and following the instructions for setting
up Reviewable configuration in the repository for your project.

?

Accessing repository settings with the GUI

Click on a repository name to access the repo settings panel. This works whether the
repo is connected or not.

If you make any changes to the settings, click the Apply button at the top of the page to
commit your changes for the repo you originally chose. Click the adjacent dropdown
button to view a panel for specifying additional repos to which these settings will be
applied (all the settings, not just your current changes). Click Cancel to discard any
change to the settings.

Prototype settings for new repos

If you are an organization owner, you can set a repo as the settings prototype for any
repos not yet accessed or created. Simply click the Set as prototype for new repos
button and new repos will get a copy of the prototype's settings the first time
Reviewable accesses them.

If you would like to see if there is or is not a current prototype repository, and which
repository it is, simply hover over the link. A tooltip will come up with one of the
following texts:

"Checking permissions...", "Loading current state..."
Please wait a few seconds.

"Restricted to organization owners."
You cannot view or edit this setting unless you're an organization owner.

"No prototype repository set."
"This is the current prototype repository."
"The current prototype repository is ____.".

Store repository settings using the .reviewable directory

The .reviewable settings directory will allow you to customize your review settings
without manually changing settings using the Reviewable user interface. The
.reviewable directory can contain a settings.yaml file and/or a completion

condition script (or more than one in case you're using repository-specific overrides).

This feature is particularly useful if you chose to connect all current and future
repos. If you would like more flexibility configuring your connected repositories,
you can use a master settings.yaml file..

?

In order to use the .reviewable settings directory, the repository needs to be
connected. Otherwise, the .reviewable directory will be ignored.

!

Reviewable reads the contents of the .reviewable directory from the
repository's default branch; this is your main or master branch unless changed

!

The settings.yaml file provides several options used to configure the settings for one
or more of your repositories. Settings listed at the top level of this file are used as the
default settings for the current repository.

View an example settings.yaml file here.

Applying a settings.yaml file to multiple repositories

Designate a master repository to store your settings.yaml file and any completion
condition scripts. The settings in this master repository will be used for all repositories
in your organization (with the exception of overrides). This master settings file will apply
its settings to all repositories, regardless of when they were created.

on GitHub. The contents of other branches don't affect the repository settings
until they get merged into the default branch.

When the settings.yaml file is used for your repositories, the settings UI in the
repositories section of the Reviewable user interface is hidden and a message
will be displayed informing you that the settings for that particular repository
are managed via the settings.yaml file.

?

An error is displayed if your settings.yaml file contains any options that are
not valid, however Reviewable will continue using the last synced value for that
option. If the file itself is invalid, Reviewable will default to the last synced value
for all settings and the completion condition script if any. Local settings will
override any invalid master settings.

!

When a repository is designated as the master, its settings file will be used as the basis
for all repositories in the organization. A master settings file can also provide
specialized settings for repositories via targeted in-file overrides.

Overrides

When you have one or more repositories with individual settings.yaml files, you may
use a master repository that will determine default settings for all repositories that
belong to an organization. These settings can be overriden in the overrides object of
the master settings.yaml file.

The overrides property has two children. The repositories object is a list of
repositories that will apply the settings specified in the settings property of this
override. The list of repositories may be a list of strings or fnmatch (glob) patterns. For
example, if you would like to apply default settings for any repository whose name
begins with dev or fire , you may use the following setting in your master
settings.yaml file:

You may add a local settings.yaml file in an individual repository to override
settings from the master settings file.

?

default-review-style: one-per-commit
overrides:
 - repositories:
 - dev*
 - fire*
 settings:
 # All repositories with names that start with `dev` or `fire` will
use "combined commits" for the `default-review-style` setting.
 default-review-style: combined-commits

Finalizing master settings

If you wish to manage all repository settings in one central place without allowing the
master settings to be overridden by local settings, you can set final: true in the
master settings which in turn causes any local settings files and completion condition
scripts to be ignored.

Reviewable badge

Choose where the Reviewable badge is to be inserted on the GitHub website:

Description — at the top or bottom of the description for the PR. This is
convenient since the link will be in a consistent place. However, manual edits to
the PR immediately after it's created will race, and might occasionally cause the
edits to be lost.
Comment — in a new PR comment. Optionally specify who should be the author
of the comment (organization members with access to the repo only). Otherwise,
this defaults to the repo connector or review visitor.
None — no badges will be created (private repos only).

If you have a current Reviewable subscription or trial, you may optionally choose when
to show the badge:

Visited - show the badge once a review has been accessed for the first time.
Started - only show the badge once a review has been published.
Requested - only show the badge once a review has been requested. This excludes
any PR that never left the draft status, since no review is requested for draft PRs.

Changes here are retroactive (except that an existing description badge won’t be
moved to a comment), but will be applied lazily as reviews are visited.

?

Default review style

Choose the default review style for all reviews in this repo. The choice here affects how
commits are grouped into revisions, and the suggested sequence of diffs to review.
Please follow a link for a full explanation of the two options.

This setting can be overridden on a particular review by any user with push
permissions.

Default review overlap strategy

Use the current review status of each file to determine how they are presented to a
user for review:

Defer to user default - Leave the review strategy up to the users preference.
Skip files claimed by others - Skip any file claimed by another team member in
an earlier revision.
Review any unreviewed files - Review any file that requires attention.
Review all files personally - Ensure that you review every file yourself, ignoring
other reviewers.

settings.yaml

badge:
 # The default setting for `location` is `description-bottom`.
 location: description-bottom | description-top | comment | none
 # `when` is optional.
 when: accessed | published | requested

settings.yaml

The default setting is `combined-commits`.
default-review-style: combined-commits | one-per-commit

Approve button output

You can customize the function of the Approve button (aka LGTM button), which
appears on the general discussion when the conditions are right. You can customize
what will be inserted into the draft when you click it. By default it inserts :lgtm: , which
renders a custom LGTM (Looks Good To Me) emoji. But, some teams customize it to
insert a form, or a different approval message. The button also always sets the
publication status to Approved.

Discussion participant dismissers

This setting controls what permissions a user needs to have to be able to dismiss
participants from a discussion. By default, anybody with write permissions can do so
but you can limit it to only repo admins if a stricter approach is desired.

These settings can be overridden by anyone, but will only apply to the individual
user.

?

settings.yaml

The default setting is `user-default`
default-review-overlap-strategy: user-default | unclaimed | unreviewed |
personally-unreviewed

settings.yaml

The `approval-text` option accepts any text.
The default setting is `:lgtm:`.
approval-text: ":lgtm:" | *

Review status in GitHub PR

This setting determines whether or not to post the current completion status of the
review as a commit status on GitHub under the context code-review/reviewable .
Choose On for visited reviews to post only after a review has been visited at least once
in Reviewable.

Code coverage

You can configure Reviewable to display code coverage information next to diffs by
letting it know where to fetch code coverage reports from. You'll need to enter a URL
template that Reviewable can instantiate to grab a report for all the files at a given
commit. The template can make use of these variables:

{{owner}} : the repo owner (or organization) username.
{{repo}} : the repo name.
{{pr}} : the pull request number.
{{commitSha}} : the full SHA of the target commit.

If needed, you can also specify one additional header to send with the request. This will
typically be an Authorization header that passes some kind of access token to enable
access to private coverage reports.

settings.yaml

The default setting is `push`
discussion-dismissal-restriction: push | maintain | admin

settings.yaml

The default setting is `accessed`
github-status-updates: accessed | always | never

There's a button to let you easily set the report source to Codecov, a popular code
coverage report aggregation service. For private repos, you can generate an API access
token under your account Settings > Access, and paste it as the value of the
Authorization header. If you're using a self-hosted instance of Codecov Enterprise

then you'll need to set the URL to something like this instead:
https://LOCAL_CODECOV_HOSTNAME/api/ghe/{{owner}}/{{repo}}/commits/{{commitS

src=extension , with LOCAL_CODECOV_HOSTNAME replaced by the name of the host
where you're running Codecov.

The coverage reports must be in a format that Reviewable understands. Currently, we
only support the Codecov native API format (both v1 and v2) and Codecov's generic
inbound report format. Additionally, if the report has a top-level error string property
we'll report that through the UI (and ignore any other data), and render any Markdown-
style links it contains. If you need support for a different format please let us know and
we'll consider it, but in general we're biased towards fetching normalized reports from
aggregators.

The URL template will be available to all users with read permissions on this
repo, so make sure to put any sensitive secrets in the headers instead.

!

If you added a header we will proxy the request through our server to keep the
header's value a secret. However, we have a short list of domains that we're
willing to proxy for. If your URL isn't on it you'll get an error and need to get in
touch with us to get it whitelisted.

?

settings.yaml

coverage:
 # The `url` option allows you to proved a url template for code
coverage reports.
 url: *

Completion condition script

The settings.yaml file allows you to specify one or more completion condition files
for an individual repository, or any repository listed in the repositories object of the
master settings.yaml file. These completion files must be included in the same
.reviewable directory as your settings.yaml file. Reviewable will use a file named
completion.js by default if it exists and no override specified a different completion

file to use.

Below is an example settings.yaml file that specifies a default completion conditions
for repositories listed in the overrides object.

Custom review completion condition

Reviewable allows you to write custom code that determines when a review is complete
and controls other details of a review's progress. Typically, you'll use this to customize
the number of reviewers required, or switch from the GitHub approval system to a
more flexible one based on explicit LGTMs. Some people have created more unusual
conditions, though, such as:

preventing review completion for N hours after a PR was created, so people get a
chance to check it out,
requiring reviews from certain people based on the labels attached to the PR, or
preventing merging of PRs that have commits with “WIP” in the title.

overrides:
 - repositories: reviewable-*
 settings:
 completion-file: reviewable-completion.js
 - repositories: hubkit
 settings:
 completion-file: hubkit-completion.js

Development environment

The Review completion condition section of the repository settings helps you refine
your code in a live evaluation environment.

In the Condition Code panel, you can edit the code that determines when a review is
complete and otherwise tweaks low-level review data. Simple things are pretty easy to
accomplish but you have the power to implement arbitrarily complex logic if you need
to. You can find a number of examples in our repository to get you started, and full
details follow below.

The condition code will run in an isolated NodeJS 18.x environment, which gets updated
regularly. The environment includes the 4.x lodash module available through the
customary _ . Note the lodash version was updated to 4.x on 9/9/2021, so if you
have a condition written before the update it will still use the lodash 3.x module. You
can require other built-in Node modules, though some may be disallowed. Each
invocation of your code must return a result within three seconds.

For testing, your code will be continuously evaluated against the Review state on the
right. It will start off with the current state of some PR in your repo, but you can fill in
the state of any PR via the small box above it, or edit the state manually to your liking.
See the review state input section below for an explanation of the state's properties.

The results of your code will appear in the Evaluation result pane at the bottom of the
settings page. They must follow a specific structure described in the condition ouput
section below.

You can update existing conditions to use lodash 4.x by inserting a
commmented dependencies flag anywhere in your condition code using the
following format: // dependencies: lodash4

?

Review state input

The current state of the review is accessible to your code via the review variable. The
sample review state below explains the various properties. All timestamp values
indicate milliseconds since the epoch, and all lists are ordered chronologically (when
appropriate). If you find that you'd like more data please ask and we'll see what we can
do.

If you would like to test a completion condition before applying the change to
your repository, you may use the completion condition playground. The
completion condition playground allows you to test a completion script against a
pull request or review specified by url. The playground does not allow you to
save the completion condition.

?

{
 summary: {
 lastRevision: 'r1', // The key of the last revision
 numUnresolvedDiscussions: 1, // The number of unresolved
discussions
 numFiles: 1, // Total number of active files in
the review
 numUnreviewedFiles: 1, // Number of files not reviewed by
anyone at latest revision
 numFilesReviewedByAtLeast: [1] // Number of files reviewed by at
least N people (as index)
 // e.g., numFilesReviewedByAtLeast[2] is the number of file
reviewed by at least 2 people
 commitsFileReviewed: true
 },
 pullRequest: {
 title: 'Work work work',
 repository: {name: 'Reviewable'},
 number: 44,
 state: 'open', // one of 'open', 'merged' or 'closed'
 body: 'There is so much work to be done, and this PR does it all.',
 // All users are annotated with a full list of teams they're members
of; if the property is
 // undefined then Reviewable wasn't able to fetch this list.
 author: {username: 'pkaminski', teams: ['reviewable/developers']},
 coauthors: [
 {username: 'pkaminski-test', teams: ['reviewable/semi-developers'],
participating: true}
],
 creationTimestamp: 1436825000000, // added recently, it could be
missing for older reviews
 draft: false,
 assignees: [
 // A user is participating iff they commented or reviewed a file.
 {username: 'pkaminski-test', participating: true},
 {username: 'mdevs5531', participating: false}
],
 requestedReviewers: [
 // When executing the condition prior to publishing a review, this
list won't include any
 // reviewers added by the "sync requested reviewers" option if it's
checked. Doing so would
 // create a dependency cycle. This only affects the posted message

-- the condition will be
 // re-evaluated after publishing with the full list of requested
reviewers to determine the
 // actual review status.
 {username: 'pkaminski-test', participating: true}
],
 requestedTeams: [
 {slug: 'developers'}
],
 sanctions: [
 // Lists pull request reviews by user along with the latest state
(one of 'approved',
 // 'changes_requested', 'commented', or 'dismissed'). Like other
user lists it'll also
 // include each user's team memberships.
 {username: 'pkaminski-state', state: 'changes_requested'}
],
 numCommits: 3,
 target: {
 owner: 'pkaminski', repo: 'sample', branch: 'work',
 branchProtected: true, // whether GitHub's branch protection is
turned on for this branch
 headCommitSha: '3cd017d236fe9174ab22b4a80fefb323dbefb50f' // may
be missing in old reviews
 },
 source: {owner: 'pkaminski', repo: 'sample', branch: 'pkaminski-
patch-9'},
 // one of dirty, unknown, blocked, behind, unstable, has_hooks,
clean, or draft
 mergeability: 'clean',
 // whether this completion is running on a merge queue commit or on a
normal one
 mergeQueueCheck: false,
 checks: {
 Shippable: {
 state: 'failure',
 descriptio: 'Builds failed on Shippable',
 timestamp: 1432363555000
 }
 }
 },
 pendingReviewers: [// List of proposed pending reviewers computed by
Reviewable

 {username: 'pkaminski', teams: ['reviewable/developers']}
 // If the pull request author was added as a last resort, the object
will have `fallback: true`
],
 deferringReviewers: [// List of reviewers who are deferring and will
be removed from pendingReviewers
 // by default unless your completion condition accesses
pendingReviewers or deferringReviewers
 {username: 'cgiroux'}
],
 revisions: [// List of all revisions, in chronological order
 {
 key: 'r1',
 snapshotTimestamp: 1436825047000, // When this revision was
snapshotted (missing if provisional)
 obsolete: false,
 commitSha: '435ae39a89e6992c9ed72fd154bc3c45290d8a97',
 baseCommitSha: '3cd017d236fe9174ab22b4a80fefb323dbefb50f',
 commits: [
 {sha: '435ae39a89e6992c9ed72fd154bc3c45290d8a97', timestamp:
1436825047000, title: 'Fix foo'}
]
 }
],
 stage: '2. In progress', // The latest review stage set by the
completion condition
 labels: [// List of all labels applied to the pull request
 'Comments only in Reviewable'
],
 sentiments: [// List of sentiments (currently just emojis) extracted
from comments
 {username: 'pkaminski', teams: ['reviewable/developers'], emojis:
['lgtm', 'shipit'], timestamp: 1449045103897}
],
 discussions: [// List of the discussions in the review (metadata
only)
 {
 numMessages: 1,
 resolved: false, // Whether the overall discussion is resolved
 participants: [
 {
 username: 'pkaminski', teams: ['reviewable/developers'],
 disposition: 'discussing', // Participant's current

disposition
 resolved: true, // False if this participant is blocking
resolution
 read: true, // False if this participant has unread messages
in this discussion
 lastActivityTimestamp: 1436828040000 // Last time user sent a
message or changed disposition
 }
],
 target: { // Target file location; the top-level discussion
doesn't have a target
 file: 'LICENSE', revision: 'r1', base: false, line: 4
 }
 }
],
 files: [// List of files in the review
 {
 path: 'LICENSE',
 revisions: [// List of the revisions where this file was changed
 {
 key: 'r1',
 action: 'modified', // one of 'added', 'modified', 'removed',
or 'renamed' (without changes)
 obsolete: false,
 reverted: false, // true if this revision of the file is the
same as base
 baseChangesOnly: false, // true if all changes can be
attributed to the base branch
 reviewers: [// List of users who marked file as reviewed at
this revision
 {username: 'somebody', timestamp: 1436828040000} //
timestamp null for legacy or inferred reviews
]
 }
],
 designatedReviewers: [// Designations inferred from CODEOWNERS
 {team: 'reviewable/legal'},
 {builtin: 'anyone'}
]
 }
],
 systemFiles: [// System files generated by Reviewable, including
commit file

The file revision properties require a bit of additional explanation. First, renamed file
matching and base change detection is performed only in clients, so the condition will
get incomplete input data until a user with appropriate permissions visits the review.

Second, the baseChangesOnly flag is computed relative to its revision's prior revision,
which is not necessarily the immediately preceding one. This becomes important when
rebasing multiple commits in a review following "review each commit" style, as
Reviewable will do its best to match up each "new" commit to its semantic antecedent.
We don't surface these details in the data structure above but our algorithm is fairly
robust and biased towards needing strong evidence for a match, so false positive
baseChangesOnly flags should be extremely rare.

Condition output

Your code must return an object with some or all of the following properties. Any
missing properties (at the top level) will be filled in by using the built-in default
condition. This means that you can safely return, e.g., just the
disableGitHubApprovals flag and the rest will be defaulted for you.

If your condition code is asynchronous, you should not return any value synchronously
and instead call done({...}) with your return value once it's ready.

 {
 path: '-- commits',
 revisions: [// List of the revisions where this file was changed
 {
 key: 'r1',
 action: 'added', // one of 'added', 'modified', 'removed'
 obsolete: false,
 reverted: false,
 reviewers: [// List of users who marked file as reviewed at
this revision
 {username: 'somebody', timestamp: 1436828040000}
]
 }
 }
]
}

completed

A boolean indicating whether the review is complete or not.

description

A string describing the current status of the review, such as 2 of 5 files reviewed,
4 unresolved discussions .

shortDescription

A string of no more than 50 characters describing the current status of the review, used
for GitHub status checks. If not provided, Reviewable will automatically truncate the
description instead.

stage

A short string describing the stage in some process that this review has reached so far.
This value will be saved and returned to the completion condition when it next
executes, so it can be used to store a bit of state. It's not currently surfaced in the UI
but may be in the future, in which case it's likely that values will be sorted alphabetically
so you may want to number your stages. If no value is returned by the condition,
Reviewable will automatically assign one of 1. Preparing , 2. In progress , or 3.
Completed .

pendingReviewers

An array of objects with a username property listing the users whose attention is
needed to advance the review, like [{username: 'pkaminski'}] . The contents of this
list will be automatically formatted and appended to the description and
shortDescription . You can either compute this value from scratch, or crib from the
review.pendingReviewers input value, which contains Reviewable's guess as to who

the pending reviewers should be. If you compute your own pendingReviewers from
scratch, Reviewable will remove any users who are deferring from the list of
pendingReviewers , unless your code accesses review.deferringReviewers .

You can read a description of the default pending reviewers logic and take a look at the
code that computes the default value.

files

An array of objects that look like {path: 'full/path/to/file', group: 'Some
Group', revisions: [key: 'r1', reviewed: true]} . (It's OK to just augment the
review.files structure with additional properties and return the whole thing here.)

To group files in the file matrix, set an optional group property on each file with
any name you'd like; all files with the same group value will be arranged into a
group with that name. Files with no group set will belong to the default, unnamed
group. Groups will be sorted alphabetically, so you can force a specific arbitrary
order by starting each group name with a digit.
To mark files as vendored, set an optional vendored property to true on any
such file. These files will default to a special Vendored group, won't participate in
file rename matching, and won't display a diff by default. Reviewable has
hardcoded path-based heuristics for vendored files as well, which you can override
by setting vendored to false on any files you'd like to exempt.
To override whether a file has been reviewed at a revision set a reviewed boolean
property there. By default, a file revision is considered reviewed if it was marked
so by at least one user.
To designate specific people for review, set a designatedReviewers property on
the file as detailed below.

Designated reviewers

Designated reviewers are a list of individuals and teams who have been requested to
review a given file. They are grouped into "scopes", which you can use to indicate the

If you want to set these properties for system files (such as the Commits file),
you'll need to add them to your files array explicitly as they're part of
review.systemFiles rather than review.files .

?

focus of the requested review (e.g., "security"), hint at multiplicity requirements (e.g.,
"one lead or two devs"), or provide any other context for a group of designations that
you'd like. There's an implicit and unnamed default scope; you can mix named scopes
with the default one but this can result in confusing UX so it's best avoided.

The per-file designatedReviewers property should be an array of any of the following:

A specific user identified by their username: {username: 'pkaminski'} .
A team identified by their team slug: {team: 'reviewable/security-team'} .
A special marker to indicate that anyone is welcome to review the file: {builtin:
'anyone'} . This marker cannot be scoped, but it's fine to mix with scoped
designations as it gets special treatment in the UI. Leaving it out won't actually
prevent undesignated users from reviewing the file, just make it clear that their
review isn't needed.
A special marker to indicate that a given scope has been fulfilled and no further
reviewers are needed for it: {builtin: 'fulfilled', scope: 'security'} . If
used without a scope it indicates that the default scope (which includes
{builtin: 'anyone'}) is fulfilled. It differs from just removing designations

targeting that scope altogether as the scope will still be used to group reviewers
and indicate that its review requirements have been fulfilled.

Unless otherwise stated, each entry in the array can be modified with any combination
of the following:

A scope property to group it into the given scope, e.g., {username:
'pkaminski', scope: 'security'} . A given user or team can be added to
multiple scopes (though you'll need one entry per scope), in which case a single
review will count against all such scopes at once. A scope can have any number of
designations.
An omitBaseChanges flag to indicate that this designatee's reviews should carry
over any file revisions affected only by base changes, e.g., {username:
'pkaminski', omitBaseChanges: true} .

The contents of designatedReviewers are only used to compute the file review
state and will not affect whether a file is considered reviewed or not. You'll need
to do that yourself, though you can crib from a sample script that matches

!

Here's an example of a designatedReviewers property:

If designatedReviewers is not set it's treated as if it consisted only of {builtin:
'anyone'} . Reviewable will also automatically create scopes for designations inferred
from CODEOWNERS files (code owners), unsolicited reviewers if {builtin: 'anyone'}
is missing (unsolicited), and the author of the pull request if they mark a file as
reviewed against recommendations (author).

designated reviewers against actual file reviewers to determine whether each
revision of a file has been reviewed, and which scopes have been fulfilled.

file.designatedReviewers = [
 // fahhem to review at the latest revision
 {username: 'fahhem'},
 // pkaminski to review at the latest revision as well, though reviews
at earlier
 // revisions will be accepted if all later revisions are
`baseChangesOnly: true`
 {username: 'pkaminski', omitBaseChanges: true},
 // also need a review from security-team, focused on security
 {team: 'reviewable/security-team', scope: 'security'},
 // and anyone else is welcome to review as well!
 {builtin: 'anyone'}
];

If you have a CODEOWNERS file in the repository, the review.files input
structure will have precomputed designatedReviewers properties inferred
from the code owners. You can leave these as-is, tweak them (e.g., by removing
{builtin: 'anyone'} from the array), or overwrite them altogether. Note that

if you leave designatedReviewers unset for a file it'll fall back to the code
owners default instead of {builtin: 'anyone'} .

?

refreshTimestamp

A timestamp in milliseconds since the epoch for when the completion condition should
be re-evaluated. Useful if some of your logic depends on the current time. You can
obtain the current time in a compatible format via Date.getTime() . If you try to
schedule a refresh less than 5 minutes from now it'll get clamped to 5 minutes, but on-
demand refreshes (e.g., triggered by a review visit) will always fire immediately. Any
subsequent executions of the condition will override previous refreshTimestamp s.

webhook

A URL string that Reviewable will send review status update notifications to. You can
hook this up directly to a Slack webhook or, through something like Zapier or
Integromat, to most any other communication tool. Specifically, whenever the
completed , description , pendingReviewers , or merge state of a review changes,

after a short debouncing delay Reviewable will POST a JSON structure like the following
to the webhook URL:

{
 // for Slack, this is Slack's Markdown flavor. See
https://www.markdownguide.org/tools/slack/ for details.
 "text": "<https://reviewable.io/reviews/reviewable/demo/1|*Demo code
review (shared)*> [Reviewable/demo #1]\nReview in progress: 1 of 4 files
reviewed, 2 unresolved discussions\nWaiting on: *pkaminski*",
 // for other Markdown-based applications using more standard Markdown
 "markdown": "[Demo code review (shared)]
(https://reviewable.io/reviews/reviewable/demo/1) \\[Reviewable/demo
#1\\]\nReview in progress: 1 of 4 files reviewed, 2 unresolved
discussions\nWaiting on: **pkaminski**",
 // for text-based applications
 "plainText": "Demo code review (shared) [Reviewable/demo #1]\nReview
in progress: 1 of 4 files reviewed, 2 unresolved discussions\nWaiting on:
pkaminski",
 // for HTML-based applications
 "html": "Demo code review
(shared)   [Reviewable/demo #1]
Review in progress: 1 of
4 files reviewed, 2 unresolved discussions
Waiting on:
pkaminski",
 // for email gateways
 "subject": "Demo code review (shared) [Reviewable/demo #1]",
 "key": "Reviewable/demo/1", // you can use this identifier for
threading

 // The following is meant for other workflows that separate the subject
from the body, such as email-like applications:
 "htmlBody": "Review in
progress: 1 of 4 files reviewed, 2 unresolved discussions
Waiting
on: pkaminski",
 "body": {
 "text": "<https://reviewable.io/reviews/reviewable/demo/1|*Review in
progress: 1 of 4 files reviewed, 2 unresolved discussions*>\nWaiting on:
pkaminski",
 "plainText": "Review in progress: 1 of 4 files reviewed, 2 unresolved
discussions\nWaiting on: pkaminski",
 "html": "Review in
progress: 1 of 4 files reviewed, 2 unresolved
discussions\n
Waiting on: pkaminski",
 "markdown": "[Review in progress]

If a webhook request fails the error will be displayed to repository admins on the
corresponding review page. (The error message returned by your server will technically
be accessible to anyone with pull permissions on the repo; however, the webhook URL
itself will never be disclosed.)

Note that archived reviews will not generally update their state even if relevant events
occur, and hence will not trigger the webhook.

disableGitHubApprovals

A boolean that, if true, will disable the “Approve” and “Request changes” options when
publishing via Reviewable. This can be useful to prevent confusion if your condition

(https://reviewable.io/reviews/Reviewable/demo/1): 1 of 4 files reviewed,
2 unresolved discussions \nWaiting on: **pkaminski**"
 },
 // And now the ultimate in customizability:
 // For if you want to build your own string, or interconnect with
another system,
 // or really anything else!
 "data": {
 "pullRequest": {
 "title": "Demo code review (shared)",
 "owner": "Reviewable",
 "repository": "Reviewable",
 "number": 1,
 "state": "open"
 },
 "review": {
 "url": "https://reviewable.io/reviews/Reviewable/demo/1",
 "completed": false,
 "status": "0 of 4 files reviewed, 3 unresolved discussions"
 },
 "usernames": {
 "author": "pkaminski",
 "waitingOn": ["pkaminski"],
 "commentsFor": []
 }
 },
}

uses some other values (e.g., LGTMs) to determine completion, but note that users will
still be able to publish approving and blocking reviews directly via GitHub.

syncRequestedReviewers

A boolean that, if true, will force synchronization of GitHub requested reviewers from
pendingReviewers . (You should only set it if the repository is connected to

Reviewable.) This can be useful to standardize the workflow (e.g., to make metrics
provided by another tool more reliable), but note that users will still be able to
manually request and unrequest reviewers anyway. When set to true , the server will
automatically update requested reviewers whenever pendingReviewers changes
(including when the PR is first created) using any repo admin account. The client will
also force enable (true) or disable (false) the "Sync requested reviewers" option
when publishing via Reviewable.

requestedTeams

A list of teams whose review should be requested for this pull request. The elements of
the list are in the same format as review.pullRequest.requestedTeams , i.e. {slug:
'org/team-slug'} . The pull request's requested teams will be adjusted so they end up
matching the list given here, adding or removing teams as necessary.

disableBranchUpdates

A boolean that, if true, will disable the ability to merge the target (base) branch into the
source (head) branch in Reviewable's UI. This is to avoid misclicks in workflows where
developers are expected to rebase rather than merge. (It's not possible to trigger a
rebase through Reviewable's UI unfortunately.)

mergeStyle

One of 'merge' , 'squash' or 'rebase' . If set, forces the merge style for a PR in
Reviewable only. (Does not affect merging via the GitHub UI or API.) If this conflicts with
GitHub's permitted merge styles it's ignored.

defaultMergeCommitMessage

A string that will be used as the default commit message when merging a pull request
from Reviewable in the normal (Merge) mode. The user can edit it before merging as
usual.

defaultSquashCommitMessage

A string that will be used as the default commit message when merging a pull request
from Reviewable in Squash mode. The user can edit it before merging as usual.

debug

Any data structure you'd like to be able to inspect when debugging your condition. It'll
be displayed in the Evaluation result pane but otherwise ignored

