
Using Reviewable for Large Pull Requests
Bogged Down by the Code Review Process?

By: Alvin Charity

Published: Friday, June 14, 2024

Code review is an important part of any developer's process, and is essential to helping
your team create the highest quality code possible. Ideally, code reviews would be limit-
ed to the scope of a feature implementation or bug fix that can be quickly reviewed, let-
ting your developers get back to coding. With over 100 million developers, it is likely that
your code lives on Github, and their lightweight code review tools are great for these
small, self-contained pull requests. However, large teams may find that code reviews
consist of hundreds of files that contain thousands of lines that need to be modified at
the same time to ensure the code continues to function together. Unfortunately, despite
being the most popular code hosting and project management platform, Github is not
the best at handling large files. Understandably, Github imposes some limits on the
number of files that can be included in PR diffs. In some instances, these limits may
cause your browser to crash when attempting to review a PR that contains 50 or more
files.

How Reviewable helps manage large pull requests
Reviewable allows you to create custom completion conditions that lets you control
many aspects of your code review process. For example, Reviewable also automatically
skips vendored files, meaning you no longer have to worry about scanning through code
added to your repository via your language’s package manager, or files dumped into
your repository by coding tools. These features allow you to reduce friction in your
team, speed up your review process, and never worry about having too many files in
your PR. For example, I maintain a complex shell environment, and currently have a pull
request that contains 148 files. Some of these files will need a thorough review, but oth-
ers can safely be ignored. Manually reviewing this number of files may take a while, and
can be a very tedious process.

Reviewable allows you to use custom completion conditions to reduce some of your
workload. These completion conditions can be edited in the repository settings section
of Reviewable, and provides a live evaluation environment where you can see how your
rules apply in real-time. Code you add to your completion condition is used to change
the state of your review using the review object as a starting point. This object pro-
vides access to the current pull request, including files, discussions, and other
information.

Managing Files Using Completion Conditions
I mentioned above that some of these files can safely be ignored. In my case this in-
cludes any files in the /objects directory. Since this code has been created in prepara-
tion for an update in the future, we want to review these files automatically to get them
out of the way.

Now these files have been reviewed and are grouped to indicate that no additional re-
view is required.

After further inspection, it seems that most of the files that are taking up space in my
repository are temporary files from external programs, located in the /test and /ar‐
chive/test_archive directories.

Since these can also be safely ignored, we can apply a similar completion condition to
mark these files as reviewed, and add these files to a group on the Reviewable
dashboard.

Now all of the files in the /test and /archive/test_archive directories have been
marked as reviewed and are grouped under the heading "Test Files: Ignore".

To keep these grouped files out of the way, we can collapse the Post-Restructure:
Ignore and Tests Files: Ignore groups.

And here is the code for the completion condition.

START REVIEWING Reviewable Pricing Blog Changelog

// dependencies: lodash4
_.forEach(review.files, (file) => {

 // This example will automatically review files in the `/ob‐
jects` directory
 // and group them into a new section of the dashboard.
 if (/objects/i.test(file.path)) {
 _.forEach(file.revisions, (rev) => {
 rev.reviewed = true;
 });
 file.group = "Post-Restructure: Ignore";
 }

 // This example marks all files in the `/test` and
`/archive/test_archive` directories
 // as reviewed and groups the test files into a new section of
the dashboard.
 if (/test/i.test(file.path)) {
 _.forEach(file.revisions, (rev) => {
 rev.reviewed = true;
 file.reviewers = [{ username: "unforswearing" }];
 });
 file.group = "Test Files: Ignore";
 }
});

// Return the review object with updated files.
return {
 files: review.files,
};

With just a few lines of code I was able to automatically review and group 136 files in
this pull request, leaving only 12 files to review, saving time and reducing friction. Check
out the documentation for completion conditions or take a look at some example com-
pletion conditions to help get you started. Reviewable helps your team manage code re-
view on your terms, without having to sacrifice developer time, or settle for slow or inef-
fective tools. Github can get you started, let Reviewable take you further.

© 2014–2024 Ideanest LLC • Terms • Privacy • Licenses • Docs • Careers • (Twitter) • Contact Us
Not affiliated with GitHub. GitHub and its logos are trademarks of GitHub, Inc.

      

