
Test Better Customers Documentation Articles Pricing Log in Try for free

End-to-end Testing How-tos & Guides 7 min read

Creating automated tests for Safari and
WebKit
Learn how to create automated tests that can run against Safari browsers using open-source tools
like Selenium and Playwright.

Alvin Charity
Published September 16, 2022

Table of contents

Difficulties in testing against Safari

Testing Safari with Selenium and
SafariDriver

Testing Safari using Playwright

Testing Safari using Cypress

Continuous Integration support for
testing Safari

Running Safari tests within your
own infrastructure

Tired of flaky end-to-end tests?

Create fast and reliable tests for
anything that runs in a browser.

Learn more

Safari is the default browser for all Apple devices, and is the second most popular

web browser worldwide. Despite its popularity, building test automation to run on
Safari or its underlying WebKit engine remains difficult, especially compared to the

relative ease of other popular browsers like Chrome, Firefox, and Edge.

In this article, you will learn about some challenges faced by developers who want

to automate testing in Safari. Additionally, you’ll read about what currently works to
automate testing in Safari, and what is still lacking. Finally, you will explore some

options for continuous integration and virtualization of the MacOS platform to help
automate your Safari testing.

Difficulties in testing against Safari

One of the major challenges you may face as a developer looking to test in Safari is

that the browser and engine are only available on Apple devices. Although there
are workarounds for using non-Apple hardware, including projects for running

MacOS software inside Docker container, all of these workarounds are in violation
of Apple’s End User License Agreement (EULA) and Terms of Service (TOS). Apple

prohibits use of any MacOS software on any device that is not “Apple branded.”
This means that any tool running Safari (for testing purposes or otherwise) on non-

Apple hardware is violating this license.

Safari itself is only made to run on MacOS hardware, so there additionally is no

official Safari browser on Linux. Because of this, any Safari container you may see
in the Docker registry will be a WebKit-based browser for Linux, and not the official

MacOS Safari. While these WebKit browsers may have some degree of feature
parity with Safari, it is crucial to test accurately against the official Safari app on

MacOS hardware.

Test Better Customers Documentation Articles Pricing Log in Try for free

https://reflect.run/
https://reflect.run/test-better/
https://reflect.run/customers/
https://reflect.run/docs/
https://reflect.run/articles/
https://reflect.run/pricing/
https://app.reflect.run/
https://app.reflect.run/registration
https://app.reflect.run/registration
https://reflect.run/
https://reflect.run/test-better/
https://reflect.run/customers/
https://reflect.run/docs/
https://reflect.run/articles/
https://reflect.run/pricing/
https://app.reflect.run/
https://app.reflect.run/registration

Having said that, there are solutions for running automated tests on Safari,

including virtualization options that are in compliance with Apple’s licensing
requirements.

Testing Safari with Selenium and SafariDriver

Selenium is a popular library for browser-based testing and automation. Selenium

allows testing against Safari via SafariDriver, which implements the cross-browser
WebDriver API spec that Selenium uses under the hood. WebDriver / Selenium

support for Safari has been available since 2016, and is the only approach for
cross-browser testing that uses a standards-based API.

The example below will use Python, so make sure you have a recent version of
Python3 and pip installed before you proceed.

To get started with Selenium and Safari driver use pip to install selenium and
webdriver-manager:

pip install selenium webdriver-manager

Once these libraries have finished downloading, you can create a new folder for

your script. In the folder you just created, create a file called main.py. Paste the
following code into main.py and save the file:

from selenium.webdriver.common.by import By

from selenium import webdriver

import time

SafariDriver = webdriver.Safari()

SafariDriver.get("https://webkit.org/status")

search_box = SafariDriver.find_element(By.ID, "search")

search_box.send_keys("CSS")

value = search_box.get_attribute("value")

search_box.submit()

time.sleep(1)

print(len(value))

SafariDriver.quit()

To run this script in your terminal, enter the following command

python3 main.py

The example above will open the page located at

https://webkit.org/status, search for the text “CSS”, and print the total
number of results found for the query.

Testing Safari using Playwright

Test Better Customers Documentation Articles Pricing Log in Try for free

https://selenium-python.readthedocs.io/
https://www.selenium.dev/selenium/docs/api/java/org/openqa/selenium/safari/SafariDriver.html
https://webkit.org/blog/6900/webdriver-support-in-safari-10/
https://reflect.run/
https://reflect.run/test-better/
https://reflect.run/customers/
https://reflect.run/docs/
https://reflect.run/articles/
https://reflect.run/pricing/
https://app.reflect.run/
https://app.reflect.run/registration

Playwright is a browser testing library that allows you to test against many

different browsers. Playwright does not use the WebDriver API spec, but rather
maintains a forked version of each browser which contains the necessary hooks

that enable Playwright to drive the browser UI.

The code below shows an example of Playwright using Python. Playwright

recommends that you use the pytest package when installing Playwright with
pip.

To do this, enter the following command in your terminal:

pip install pytest-playwright

The command above will install an executable called playwright. You will need
this executable to install browsers and engines to be used with your Playwright

scripts. Besides Safari, Playwright includes support for several other browsers
including Google Chrome, Firefox, and Edge. The full list of supported browser is

available here. To install these browsers, enter the following command in your
terminal

playwright install

After your Playwright installation is complete, create a new folder and copy the

code below into a new file called playwright.py:

from playwright.sync_api import sync_playwright

def webkit(playwright):

 browser = playwright.webkit.launch()

 page = browser.new_page()

 page.goto("https://webkit.org/status")

 page.locator('#search').fill('css')

 value = page.locator('#feature-count').all_text_contents()

 print(f"total results = {''.join(value)}")

 page.close()

with sync_playwright() as playwright:

 webkit(playwright)

To run this script on your machine, enter the following command in your terminal

python3 playwright.py

As with the previous example, this script will print the total number of search

results to your terminal console.

Testing Safari using Cypress

Test Better Customers Documentation Articles Pricing Log in Try for free

https://playwright.dev/
https://playwright.dev/python/docs/test-runners
https://playwright.dev/docs/browsers
https://reflect.run/
https://reflect.run/test-better/
https://reflect.run/customers/
https://reflect.run/docs/
https://reflect.run/articles/
https://reflect.run/pricing/
https://app.reflect.run/
https://app.reflect.run/registration

Cypress is another popular browser testing tool that is often compared to

Selenium and Playwright. Although Cypress does not officially support testing on
WebKit browsers, plans have been underway since 2020 to add WebKit support to

Cypress and experimental support for Safari testing has been released as part of
Cypress’s 10.8 release.

In order to enable testing against Safari Webkit, you’ll need to set the following flag
in your Cypress configuration:

experimentalWebKitSupport: true

To run tests against Safari, you’ll need to pass the --browser webkit flag when

running your Cypress test via the command line:

cypress run --browser webkit

Interestingly, the Cypress team didn’t implement WebKit support directly. Instead,
they’ve used Playwright’s own fork of WebKit; specifically the playwright-

webkit plugin.

More information on the current status of Safari support within Cypress can be

found in this GitHub issue.

Continuous Integration support for testing
Safari

GitHub and CircleCI are two popular Continuous Integration (CI) vendors that
support running tests on MacOS within their infrastructure, and thus support

running tests on Safari.

Github Actions

When creating a GitHub Action, you must specify what “runner” will be used to
execute the action. GitHub maintains several runners that run on top of MacOS.

To use MacOS as a part of your Github CI, add runs-on: macos-latest to your
yaml file. For example:

jobs:

 build:

 runs-on: macos-12

More information can be found on the GitHub Blog.

CircleCI

In addition to GitHub Actions, CircleCI also allows you to run tests against Safari on

the MacOS platform. On the surface, GitHub Actions and CircleCI may appear
similar, however CI is CircleCI’s main product and so they have a wealth of

additional options available for you. You can read more about using CircleCI for
Safari tests at the CircleCI docs.

Test Better Customers Documentation Articles Pricing Log in Try for free

https://github.com/cypress-io/cypress/issues/6422
https://github.com/features/actions
https://circleci.com/
https://docs.github.com/en/actions/using-github-hosted-runners/about-github-hosted-runners#supported-runners-and-hardware-resources
https://github.blog/changelog/2022-06-13-github-actions-macos-12-for-github-hosted-runners-is-now-generally-available/
https://circleci.com/docs/testing-macos
https://reflect.run/
https://reflect.run/test-better/
https://reflect.run/customers/
https://reflect.run/docs/
https://reflect.run/articles/
https://reflect.run/pricing/
https://app.reflect.run/
https://app.reflect.run/registration

Running Safari tests within your own
infrastructure

There are a few great options available that provide hosting for virtualized MacOS
servers that allow you to run Safari tests in infrastructure that you control, but

without requiring you maintain your own fleet of Apple hardware that’s on-premise
or co-located.

AWS EC2 MacOS instances

Amazon offers MacOS EC2 instances. This pay-as-you-go service allows you to

spin up a MacOS instance on demand for whatever purposes you need. AWS
offers both Intel and ARM-based instances and every instance that is created has

built-in access to all of the AWS related tools you need as part of your workflow.
There are a number of additional options available for using AWS to test Safari,

head to the Amazon EC2 Mac Instances page to find out more.

Anka by Veertu

Veertu offers MacOS virtualization in a container-like environment that allows you
to run tests against MacOS and Safari. Anka is their virtualization layer built

directly on top of the MacOS’s hypervisor that supports stopping, starting, and
provisioning Mac virtual machines as needed. Like AWS’s Mac EC2 instances,

Anka supports both Intel or ARM-based machines.

MacStadium

MacStadium describes itself as a “Mac focused cloud” and offers tools and
services that fit this description. In addition to offering MacOS virtualization for

testing and CI, MacStadium provides remote desktops and bare metal access to a
MacOS machine for fine-grained, low level access to Apple’s hardware. True to the

“cloud” title, MacStadium also has services covering storage, networking, and
monitoring.

Try Reflect: A modern cross-browser testing platform

Reflect is a no-code testing platform that lets you build and run tests across all

popular browsers, including Safari, without any installation required. Creating a test
in Reflect is easy: the tool records your actions as you use your site and

automatically translates those actions into a repeatable test that you can run
across all modern browsers instantly.

Starting creating Safari tests in minutes. Try Reflect for free.

Get started with Reflect today

Test Better Customers Documentation Articles Pricing Log in Try for free

https://aws.amazon.com/ec2/instance-types/mac/
https://aws.amazon.com/ec2/instance-types/mac/
https://veertu.com/
https://docs.veertu.com/anka/
https://www.macstadium.com/
https://app.reflect.run/registration
https://app.reflect.run/registration
https://app.reflect.run/registration
https://reflect.run/
https://reflect.run/test-better/
https://reflect.run/customers/
https://reflect.run/docs/
https://reflect.run/articles/
https://reflect.run/pricing/
https://app.reflect.run/
https://app.reflect.run/registration

