
GUIDES 13 min to read

12 useful Python scripts for developers
WRITTEN BY

Madhura Kumar

PUBLISHED ON

Jun 8, 2022

It’s no secret that a developer’s day-to-day work often involves creating and maintaining small

utility scripts. These scripts are the glue that connects various aspects of your system or build

environment. While these Python scripts may not be complex, maintaining them can become a

tedious chore that could cost you time and money.

One way to lighten the maintenance load is to use script automation. Rather than spending your

time running scripts (often manually), script automation allows you to schedule these tasks to

run on a particular timetable or be triggered in response to certain events.

This article will cover twelve Python scripts that were selected for their general utility, ease of use,

and positive impact on your workload. They range in complexity from easy to intermediate and

focus on text processing and file management. Specifically, we'll walk through the following use

cases:

1. Create strong random passwords

ANNOUNCING OUR $32 MILLION SERIES B

https://www.airplane.dev/blog/series-b-thrive

2. Extract text from a PDF

3. Text processing with Pandoc

4. Manipulate audio with Pydub

5. Filter text

6. Locate addresses

7. Convert a CSV to Excel

8. Pattern match with regular expressions

9. Convert images to JPG

10. Compress images

11. Get content from Wikipedia

12. Create and manage Heroku apps

These scripts can be dropped into just about any workflow or run as part of an automated

playbook using a tool like Airplane.

Using Airplane to manage and execute Python scripts

Airplane is a developer platform to transform APIs, SQL queries, and scripts into internal

applications in minutes. The platform provides a central location to store your Python scripts as

well as to run, manage, and share them securely.

You can also use Airplane schedules as a substitute for cron and other job schedulers and

Airplane provides permissions, audit logs, approval flows, and much more out of the box.

Before we jump into some useful Python scripts, let's quickly walk through how you can use

Airplane to manage and execute them.

You can get started by signing up for a free Airplane account and heading to: Library > '+' to

create a new Task. A task represents a single step or operation such as 'hit X API endpoint' or 'run

X script'. A task can be a SQL query, custom TypeScript/JavaScript/Python, or even a wrapper

around a REST API call.

You can also create Views (custom UIs) or orchestrate Workflows (multi-step code-based

operations) from this menu. Select Task as shown below:

https://www.airplane.dev/
https://www.airplane.dev/
https://docs.airplane.dev/schedules/schedules
https://docs.airplane.dev/platform/permissions
https://docs.airplane.dev/platform/audit-log
https://docs.airplane.dev/platform/configure-approval-flow
https://app.airplane.dev/signup
https://docs.airplane.dev/tasks/overview
https://docs.airplane.dev/views/getting-started
https://docs.airplane.dev/workflows/overview

A task can be a SQL query, custom TypeScript/JavaScript/Python, or even a wrapper around a REST API call.

There are a number of different options for creating a task. Let's select Python. Note that you can

create your task from the UI as described below but you can also create and define your task fully

in code from the CLI.

Add a task name and description and click Continue.

https://docs.airplane.dev/platform/airplane-cli
https://docs.airplane.dev/creating-tasks/python-dependencies

We'll first create our task and then deploy our code. Click Create task to finish adding the task to

Airplane.

Next, we'll use the Airplane CLI tool to write a script for this task. This tool will allow you to create

and manage scripts locally on your machine.

Be sure to wrap your code in a function called `main`. Dependencies can be included in a

requirements.txt file saved in your script’s parent directory.

https://docs.airplane.dev/platform/airplane-cli
https://docs.airplane.dev/creating-tasks/python-dependencies

Before deploying our Python script to Airplane, we'll create a `yaml` file containing the name of

the script so it's easily identifiable.

For example, if you are filtering text with regular expressions, you might title this file

regex_filter.task.yaml. An explanation of the task definition can be found in the Airplane task

definition docs.

Your completed `yaml` file should look similar to the example below:

Once your Python script and `yaml` task definition file have been created, you can deploy to

Airplane using the CLI: `airplane deploy regex_filter.task.yaml`

Your Python task is now ready to run!

You can find more details on getting started in the Airplane developer docs for Python, quickstart

guide, and guide to getting started with runbooks.

Now that we know how to use Airplane to manage and execute Python scripts, let's walk through

some of the scripts themselves.

Python scripts for developers to implement

Let's dive into twelve Python utility scripts that we can leverage to make our lives easier. The code

samples from this article can be found in this GitHub repository.

1. Create strong random passwords

There are many reasons to create strong random passwords, from onboarding new users to

providing a password-reset workflow to creating a new password when rotating credentials. You

can easily use a dependency-free Python script to automate this process:

python

slugslug:: regex_filter regex_filter

namename:: "Regex Filter""Regex Filter"

descriptiondescription:: Filter text using Regular Expressions Filter text using Regular Expressions

pythonpython::

 entrypoint entrypoint:: regex_filter regex_filter..pypy

11

22

33

44

55

python

Generate Strong Random Passwords# Generate Strong Random Passwords

importimport random random

importimport string string

This script will generate an 18 character password# This script will generate an 18 character password

word_length word_length == 1818

Generate a list of letters, digits, and some punctuation# Generate a list of letters, digits, and some punctuation

components components == [[stringstring..ascii_lettersascii_letters,, string string..digitsdigits,, "!@#$%&""!@#$%&"]]

flatten the components into a list of characters# flatten the components into a list of characters

chars chars == [[]]

forfor clist clist inin components components::

 forfor item item inin clist clist::

 chars chars..appendappend((itemitem))

defdef generate_passwordgenerate_password(())::

 # Store the generated password# Store the generated password

 password password == [[]]

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

https://docs.airplane.dev/tasks/task-definition#parameters
https://docs.airplane.dev/creating-tasks/python
https://docs.airplane.dev/quickstart/getting-started/quickstart-guide
https://docs.airplane.dev/quickstart/getting-started/runbooks
https://github.com/unforswearing/useful_python_scripts_article

2. Extract text from a PDF

Python can also be used to easily extract text from PDFs using the `PyPDF2` package. Getting text

from a PDF file proves useful for data mining, invoice reconciliation, or report generation, and the

extraction process can be automated in just a few lines of code. You can run `pip install

PyPDF2` in your terminal to install the package. Below are a few examples of what you can achieve

using Py2PDF2:

Say you receive a multipage PDF file but you only need the first page. The script below allows you

to extract text from the first page in a PDF with just a few lines of Python code:

Maybe you’d like to copy text from two PDF files and merge the text into a new PDF. You can do

this using the code below:

These examples, along with several others, can be found here.

3. Text processing with Pandoc

Pandoc is a fully featured command-line tool that allows you to convert markup between different

formats. This means you can use Pandoc to convert Markdown text directly to docx or MediaWiki

markup to DocBook. Markup-format conversion allows you to process external content or user-

 # Choose a random item from 'chars' and add it to 'password'# Choose a random item from 'chars' and add it to 'password'

 forfor i i inin rangerange((word_lengthword_length))::

 rchar rchar == random random..choicechoice((charschars))

 password password..appendappend((rcharrchar))

 # Return the composed password as a string# Return the composed password as a string

 returnreturn """"..joinjoin((passwordpassword))

Output generated password# Output generated password

printprint((generate_passwordgenerate_password(())))

1616

1717

1818

1919

2020

2121

2222

2323

python

import module PyPDF2# import module PyPDF2

importimport PyPDF2 PyPDF2

put 'example.pdf' in working directory# put 'example.pdf' in working directory

and open it in read binary mode# and open it in read binary mode

pdfFileObj pdfFileObj == openopen(('example.pdf''example.pdf',, 'rb''rb'))

call and store PdfFileReader# call and store PdfFileReader

object in pdfReader# object in pdfReader

pdfReader pdfReader == PyPDF2 PyPDF2..PdfFileReaderPdfFileReader((pdfFileObjpdfFileObj))

to print the total number of pages in pdf# to print the total number of pages in pdf

print(pdfReader.numPages)# print(pdfReader.numPages)

get specific page of pdf by passing# get specific page of pdf by passing

number since it stores pages in list# number since it stores pages in list

to access first page pass 0# to access first page pass 0

pageObj pageObj == pdfReader pdfReader..getPagegetPage((00))

extract the page object# extract the page object

by extractText() function# by extractText() function

texts texts == pageObj pageObj..extractTextextractText(())

print the extracted texts# print the extracted texts

printprint((textstexts))

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

python

https://pythonsansar.com/how-extract-text-pdf-python/
https://pandoc.org/
https://pandoc.org/
https://python.hotexamples.com/examples/sh/-/pandoc/python-pandoc-function-examples.html
https://boisgera.github.io/pandoc/examples/
https://boisgera.github.io/pandoc/examples/
https://github.com/jiaaro/pydub
https://github.com/jiaaro/pydub

submitted information without restricting the data to a single format. You can install the `pandoc`

package with `pip`. Following are a few examples of what you can do with `pandoc`.

First, say you receive a `markdown` formatted document but need to convert it to PDF. `pandoc`

makes this easy:

Or maybe you'd like to convert the `markdown` file to a `json` object. You can use the following

script to do so:

You can find many other example functions here, or check out the `pandoc` package

documentation for more information.

4. Manipulate audio with Pydub

Pydub is a Python package that allows you to manipulate audio, including converting audio to

various file formats like `wav` or `mp3`. Additionally, Pydub can segment an audio file into

millisecond samples, which may be particularly useful for machine learning tasks. Pydub can be

installed by entering `pip install pydub` in your terminal.

Say you’re working with audio and need to ensure each file has the proper volume. You can use

this script to automate the task:

Pydub has many additional features not covered in this example. You can find more of these in the

Pydub GitHub repository.

5. Filter text

python

importimport pandoc pandoc

in_file in_file == openopen(("example.md""example.md",, "r""r"))..readread(())

pandocpandoc..writewrite((in_filein_file,, filefile=="example.pdf""example.pdf",, formatformat=="pdf""pdf"))

11

22

33

44

python

importimport pandoc pandoc

md_string md_string == """"""

Hello from Markdown# Hello from Markdown

This is a markdown string**This is a markdown string**

""""""

input_string input_string == pandoc pandoc..readread((md_stringmd_string))

pandocpandoc..writewrite((input_stringinput_string,, formatformat=="json""json",, filefile=="md.json""md.json"))

11

22

33

44

55

66

77

88

python

fromfrom pydub pydub importimport AudioSegment AudioSegment

audio_file audio_file == AudioSegment AudioSegment..from_mp3from_mp3(("example.mp3""example.mp3"))

louder_audio_file louder_audio_file == audio_file audio_file ++ 1818

louder_audio_filelouder_audio_file..exportexport(("example_louder.mp3""example_louder.mp3",, formatformat=="mp3""mp3"))

11

22

33

44

55

https://pandoc.org/
https://python.hotexamples.com/examples/sh/-/pandoc/python-pandoc-function-examples.html
https://boisgera.github.io/pandoc/examples/
https://boisgera.github.io/pandoc/examples/
https://github.com/jiaaro/pydub
https://github.com/jiaaro/pydub

Matching and filtering text with regular expressions in Python is simple, and the benefits can be

enormous. Say you have a system for batch processing sales-confirmation messages, and you

need to extract a credit card from the text of an email message. The script below can quickly find

any credit card number that matches the pattern, allowing you to easily filter this information from

any textual content:

6. Locate addresses

Locating an address can be useful if you're dealing with shipping or delivery logistics or for simple

user-profiling tasks. To get started, install `geocoder` by running `pip install geocoder` in your

terminal. The script below allows you to easily find the latitude and longitude coordinates for any

address or to find an address from any set of coordinates:

7. Convert a CSV to Excel

You may find yourself frequently managing CSV file outputs from an analytics platform or a

dataset. Opening the CSV file in Excel is relatively simple, but Python allows you to skip this

manual step by automating the conversion. This also allows you to manipulate the CSV data

before conversion into Excel, saving additional time and effort.

python

Filter Text# Filter Text

Import re module# Import re module

importimport re re

Take any string data# Take any string data

string string == """a string we are using to filter specific items."""a string we are using to filter specific items.

perhaps we would like to match credit card numbersperhaps we would like to match credit card numbers

mistakenly entered into the user input. 4444 3232 1010 8989mistakenly entered into the user input. 4444 3232 1010 8989

and perhaps another? 9191 0232 9999 1111"""and perhaps another? 9191 0232 9999 1111"""

Define the searching pattern# Define the searching pattern

pattern pattern == '(([0-9](\s+)?){4}){4}''(([0-9](\s+)?){4}){4}'

match the pattern with input value# match the pattern with input value

found found == re re..searchsearch((patternpattern,, string string))

printprint((foundfound))

Print message based on the return value# Print message based on the return value

ifif found found::

 printprint(("Found a credit card number!""Found a credit card number!"))

elseelse::

 printprint(("No credit card numbers present in input""No credit card numbers present in input"))

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

python

importimport geocoder geocoder

address address == "1600 Pennsylvania Ave NW, Washington DC USA""1600 Pennsylvania Ave NW, Washington DC USA"

coordinates coordinates == geocoder geocoder..arcgisarcgis((addressaddress))

geo geo == geocoder geocoder..arcgisarcgis((addressaddress))

printprint((geogeo..latlnglatlng))

output: [38.89767510765125, -77.03654699820865]# output: [38.89767510765125, -77.03654699820865]

If we want to retrieve the location from a set of coordinates# If we want to retrieve the location from a set of coordinates

perform a reverse query.# perform a reverse query.

location location == geocoder geocoder..arcgisarcgis(([[38.8976751076512538.89767510765125,, --77.0365469982086577.03654699820865]],, method method=="reverse""reverse"))

output: <[OK] Arcgis - Reverse [White House]># output: <[OK] Arcgis - Reverse [White House]>

printprint((locationlocation))

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

Start by downloading the `openpyxl` package using `pip install openpyxl`. Once `openpyxl` is

installed, you can use the script below to convert a CSV file to an Excel spreadsheet:

The script above is a part of the Awesome Python Scripts GitHub repository.

8. Pattern match with regular expressions

Collecting data from unstructured sources can be a very tedious process. Similar to the filtering

example above, Python allows for more detailed pattern matching using regular expressions. This

is useful for categorizing textual information as part of a data-processing workflow or searching

for specific keywords in user-submitted content. The built-in regular expression library is called

python

#!python3#!python3

-*- coding: utf-8 -*-# -*- coding: utf-8 -*-

importimport openpyxl openpyxl

importimport sys sys

#inputs#inputs

printprint(("This programme writes the data in any Comma-separated value file (such as: .csv or .data"This programme writes the data in any Comma-separated value file (such as: .csv or .data

printprint(("The input and output files must be in the same directory of the python file for the prog"The input and output files must be in the same directory of the python file for the prog

csv_name csv_name == inputinput(("Name of the CSV file for input (with the extension): ""Name of the CSV file for input (with the extension): "))

sep sep == inputinput(("Separator of the CSV file: ""Separator of the CSV file: "))

excel_name excel_name == inputinput(("Name of the excel file for output (with the extension): ""Name of the excel file for output (with the extension): "))

sheet_name sheet_name == inputinput(("Name of the excel sheet for output: ""Name of the excel sheet for output: "))

#opening the files#opening the files

trytry::

 wb wb == openpyxl openpyxl..load_workbookload_workbook((excel_nameexcel_name))

 sheet sheet == wb wb..get_sheet_by_nameget_sheet_by_name((sheet_namesheet_name))

 filefile == openopen((csv_namecsv_name,,"r""r",,encoding encoding == "utf-8""utf-8"))

exceptexcept::

 printprint(("File Error!""File Error!"))

 sys sys..exitexit(())

#rows and columns#rows and columns

row row == 11

column column == 11

#for each line in the file#for each line in the file

forfor line line inin filefile::

 #remove the \n from the line and make it a list with the separator#remove the \n from the line and make it a list with the separator

 line line == line line[[::--11]]

 line line == line line..splitsplit((sepsep))

 #for each data in the line#for each data in the line

 forfor data data inin line line::

 #write the data to the cell#write the data to the cell

 sheet sheet..cellcell((rowrow,,columncolumn))..value value == data data

 #after each data column number increases by 1#after each data column number increases by 1

 column column +=+= 11

 #to write the next line column number is set to 1 and row number is increased by 1#to write the next line column number is set to 1 and row number is increased by 1

 column column == 11

 row row +=+= 11

#saving the excel file and closing the csv file#saving the excel file and closing the csv file

wbwb..savesave((excel_nameexcel_name))

filefile..closeclose(())

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

2121

2222

2323

2424

2525

2626

2727

2828

2929

3030

3131

3232

3333

3434

3535

3636

3737

3838

3939

4040

4141

4242

4343

4444

4545

4646

4747

4848

4949

https://github.com/hastagAB/Awesome-Python-Scripts/blob/master/CSV-to-Excel/main.py
https://github.com/hastagAB/Awesome-Python-Scripts

`re`, and once you get the hang of the regular expression syntax, you can automate almost any

pattern-matching script.

For example, maybe you’d like to match any email addresses found in the text you're processing.

You can use this script to do so:

You can use this script if you need to match phone numbers in your text:

python

importimport re re

emailRegex emailRegex == re re..compilecompile((r'''(r'''(

 [a-zA-Z0-9._%+-]+ # username [a-zA-Z0-9._%+-]+ # username

 @ # @ symbol @ # @ symbol

 [a-zA-Z0-9.-]+ # domain name [a-zA-Z0-9.-]+ # domain name

 (\.[a-zA-Z]{2,4}) # dot-something (\.[a-zA-Z]{2,4}) # dot-something

)''')''',, re re..VERBOSEVERBOSE))

store matched addresses in an array called "matches"# store matched addresses in an array called "matches"

matches matches == [[]]

text text == """"""

An example text containing an email address, such as user@example.com or something like hello@eAn example text containing an email address, such as user@example.com or something like hello@e

""""""

search the text and append matched addresses to the "matches" array# search the text and append matched addresses to the "matches" array

forfor groups groups inin emailRegex emailRegex..findallfindall((texttext))::

 matches matches..appendappend((groupsgroups[[00]]))

matches => ['user@example.com', 'hello@example.com']# matches => ['user@example.com', 'hello@example.com']

printprint((matchesmatches))

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

python

importimport re re

text text == """"""

Here is an example string containing various numbers, some Here is an example string containing various numbers, some

of which are not phone numbers.of which are not phone numbers.

Business AddressBusiness Address

4553-A First Street4553-A First Street

Washington, DC 20001Washington, DC 20001

202-555-6473202-555-6473

301-555-8118301-555-8118

""""""

phoneRegex phoneRegex == re re..compilecompile((r'''(r'''(

 (\d{3}|\(\d{3}\))? # area code (\d{3}|\(\d{3}\))? # area code

 (\s|-|\.)? # separator (\s|-|\.)? # separator

 (\d{3}) # first 3 digits (\d{3}) # first 3 digits

 (\s|-|\.) # separator (\s|-|\.) # separator

 (\d{4}) # last 4 digits (\d{4}) # last 4 digits

 (\s*(ext|x|ext.)\s*(\d{2,5}))? # extension (\s*(ext|x|ext.)\s*(\d{2,5}))? # extension

)''')''',, re re..VERBOSEVERBOSE))

matches matches == [[]]

forfor numbers numbers inin phoneRegex phoneRegex..findallfindall((texttext))::

 matches matches..appendappend((numbersnumbers[[00]]))

matches => ['202-555-6473', '301-555-8118']# matches => ['202-555-6473', '301-555-8118']

printprint((matchesmatches))

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

1616

1717

1818

1919

2020

2121

2222

2323

2424

2525

2626

2727

2828

2929

Automate the Boring Stuff has a great chapter about setting up and using regular expressions in

Python.

9. Convert images to JPG

The `.jpg` format is perhaps the most popular image format currently in use. You may find

yourself needing to convert images from other formats to generate project assets or image

recognition. The `pillow` package from Python makes converting images to `jpg` a simple

process:

10. Compress images

Sometimes you may need to compress an image as part of the asset-creation pipeline for a new

site or temporary landing page and may not want to do so manually, or you have to send the task

to an external image-processing service. Using the `pillow` package, you can easily compress

JPG images to reduce the file size while retaining image quality. Install `pillow` using `pip

install pillow`.

The example below will reduce a 2.5 MB image to 293 KB:

11. Get content from Wikipedia

Wikipedia provides a fantastic general overview of many topics. This information can be used to

add additional information to transactional emails, track changes on a particular set of articles, or

to make training documentation or reports. Thankfully, it’s also extremely easy to gather

information using the Wikipedia package for Python.

You can install the Wikipedia package using `pip install wikipedia`. When the installation is

complete, you are ready to begin.

python

requires the Pillow module used as `PIL` below# requires the Pillow module used as `PIL` below

fromfrom PIL PIL importimport Image Image

importimport os os

importimport sys sys

filefile=="toJPG.png""toJPG.png"

filename filename == filefile..splitsplit((".""."))

img img == Image Image..openopen((filefile))

new_name new_name == filename filename[[00]] ++ ".jpg"".jpg"

converted_img converted_img == img img..convertconvert(('RGB''RGB'))

converted_imgconverted_img..savesave((new_namenew_name))

11

22

33

44

55

66

77

88

99

1010

python

the pillow package can be imported as PIL# the pillow package can be imported as PIL

fromfrom PIL PIL importimport Image Image

file_path file_path == "image_uncompressed.jpg""image_uncompressed.jpg"

img img == Image Image..openopen((file_pathfile_path))

heightheight,, width width == img img..sizesize

compressed compressed == img img..resizeresize((((heightheight,, width width)),, Image Image..ANTIALIASANTIALIAS))

compressedcompressed..savesave(("image_compressed.jpg""image_compressed.jpg",, optimize optimize==TrueTrue,,qualityquality==99))

11

22

33

44

55

66

77

https://automatetheboringstuff.com/
https://automatetheboringstuff.com/chapter7/

If you already know the specific page content you would like to pull, you can do so directly from

that page:

This package also allows you to search for pages matching specified text:

12. Create and manage Heroku apps

Heroku is a popular platform for deploying and hosting web applications. As a managed service, it

allows developers to easily set up, configure, maintain, and even delete applications through the

Heroku API. You can also easily create or manage Heroku applications using Airplane runbooks

since Airplane makes it extremely easy to hit APIs and trigger events.

The example below relies on the `heroku3` package, which you can install using `pip install

heroku3`. Note that you will need a Heroku API key to access the platform.

Connect to Heroku using Python:

Once you are connected to Heroku, you can list your available applications and select an

application to manage directly:

python

importimport wikipedia wikipedia

page_content page_content == wikipedia wikipedia..pagepage(("parsec""parsec"))..contentcontent

outputs the text content of the "Parsec" page on wikipedia# outputs the text content of the "Parsec" page on wikipedia

printprint((page_contentpage_content))

11

22

33

44

python

importimport wikipedia wikipedia

search_results search_results == wikipedia wikipedia..searchsearch(("arc second""arc second"))

outputs an array of pages matching the search term# outputs an array of pages matching the search term

printprint((search_resultssearch_results))

11

22

33

44

python

importimport heroku3 heroku3

Be sure to update the api_key variable with your key# Be sure to update the api_key variable with your key

api_key api_key == "12345-ABCDE-67890-FGHIJ""12345-ABCDE-67890-FGHIJ"

client client == heroku3 heroku3..from_keyfrom_key((api_keyapi_key))

11

22

33

44

55

python

importimport heroku3 heroku3

api_key api_key == "12345-ABCDE-67890-FGHIJ""12345-ABCDE-67890-FGHIJ"

client client == heroku3 heroku3..from_keyfrom_key((api_keyapi_key))

clientclient..appsapps(())

the above command prints an array of available applications# the above command prints an array of available applications

[<app 'airplanedev-heroku-example - ed544e41-601d-4d1b-a327-9a1945b743cb'>, <app 'notes-app -# [<app 'airplanedev-heroku-example - ed544e41-601d-4d1b-a327-9a1945b743cb'>, <app 'notes-app -

use the following command to connect to a specific application# use the following command to connect to a specific application

app app == client client..appsapps(())[["airplanedev-heroku-example""airplanedev-heroku-example"]]

add a config variable for your application# add a config variable for your application

config config == app app..configconfig(())

configconfig[["test_var""test_var"]] == "value""value"

11

22

33

44

55

66

77

88

99

1010

1111

1212

1313

1414

1515

https://devcenter.heroku.com/articles/platform-api-reference
https://docs.airplane.dev/quickstart/getting-started/runbooks
https://dashboard.heroku.com/account/applications

Share this article:

Then, the following script will allow you to create an application as a part of an Airplane runbook:

After creating the application, you can manage it directly with the `heroku3` package. Head to the

`Heroku3.py` GitHub repository for a full list of options.

Get started

In this article we outlined twelve simple Python scripts you can use to automate various manual

tasks. We selected these scripts not only because of their simplicity and utility but also because of

their impact compared to their relative size.

Best of all, you can leverage Airplane to manage and run these scripts seamlessly and safely.

Airplane runbooks allow you to easily manage and deploy Python scripts and compose multi-step

workflows. Airplane also lets you manage your scripts on your local machine, which allows you to

use your dev environment to write and test scripts before deployment.

While we covered Python in this article, you can also build workflows in Airplane using Node.js or

Docker to run shell scripts. Airplane also allows you to work with SQL and REST, and automates

alerting via Slack and email. You can sign up for a free account to try it out.

Author: Alvin Charity

Alvin Charity is a writer, musician, sound artist, audio / video editor, and self-taught Javascript

programmer based in Washington, DC.

enable or disable maintenance mode# enable or disable maintenance mode

enable# enable

appapp..enable_maintenance_modeenable_maintenance_mode(())

disable# disable

appapp..disable_maintenance_modedisable_maintenance_mode(())

restarting your application is simple# restarting your application is simple

appapp..restartrestart(())

1616

1717

1818

1919

2020

2121

2222

2323

2424

2525

python

importimport heroku3 heroku3

api_key api_key == "12345-ABCDE-67890-FABCD""12345-ABCDE-67890-FABCD"

client client == heroku3 heroku3..from_keyfrom_key((api_keyapi_key))

clientclient..create_appcreate_app(("app-created-with-airplane""app-created-with-airplane"))

11

22

33

44

55

Subscribe to new blog posts from Airplane.

https://www.facebook.com/sharer/sharer.php?u=https://airplane.ghost.io/12-useful-python-scripts-for-developers/
https://www.twitter.com/share?text=12%20useful%20Python%20scripts%20for%20developers&url=https://airplane.ghost.io/12-useful-python-scripts-for-developers/
https://www.linkedin.com/sharing/share-offsite/?url=https://airplane.ghost.io/12-useful-python-scripts-for-developers/
https://github.com/martyzz1/heroku3.py
https://github.com/martyzz1/heroku3.py
https://github.com/martyzz1/heroku3.py
https://www.airplane.dev/
https://docs.airplane.dev/
https://docs.airplane.dev/platform/slack-integration
https://www.airplane.dev/
https://www.unforswearing.com/
https://www.airplane.dev/blog/tags/guides
https://www.airplane.dev/blog/tags/guides
https://www.airplane.dev/

